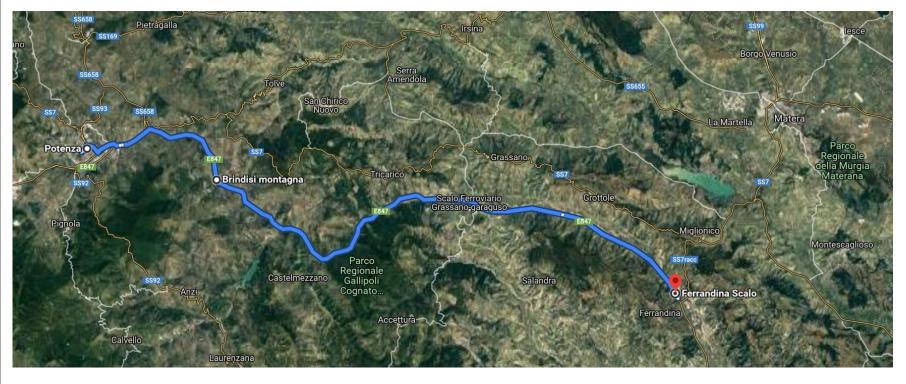


Mitigazione dei rischi naturali per la sicurezza e la mobilità nelle aree montane del Mezzogiorno

Università degli studi della Basilicata

Modelli di gestione delle strutture ed infrastrutture viarie finalizzati alla mitigazione del rischio sismico OR3-OR6


Marco VONA (OR3)
Donatello CARDONE (OR6)
Benedetto MANGANELLI
Paolo HARABAGLIA

27 Febbraio 2024

Area di studio

SS 407 "Basentana"

Brindisi I +

11

25

Opere nell'area di studio

POTENZA - METAPONTO

Viadotto Coordinate GPS Tiera di vaglio + 40°39'22.86"N, 15°52'28.81"E Difesa II + 40°39'15.78"N, 15°53'17.49"E Difesal+ 40°39'14.71"N, 15°53'23.83"E Basento + 40°39'3.07"N, 15°53'46.01"E 40°39'6.41"N, 15°55'35.74"E PO_SS407_6072 PO SS407 6476 40°38'57.12"N, 15°55'51.25"E PO SS407 6957 40°38'53.10"N, 15°56'7.37"E 40°37'49.51"N, 15°57'0.33"E Grancia I + Grancia II + 40°37'25.38"N, 15°57'2.05"E

40°36'41.48"N, 15°57'15.20"E Brindisi II + 40°36'38,74"N, 15°57'23,94"E Giaconte + 40°36'18.95"N, 15°58'22.38"E Gianni + 40°36'17.53"N, 15°58'41.99"E Mecca + Coronati + 40°35'55.68"N: 15°59'3.68"E Brutto + 40°35'40.01"N, 15°59'9.05"E 40°35'24.89"N, 15°59'42.60"E Pietra + 40°34'57.17"N, 16° 0'31.79"E Adamo + Trivigno + 40°34'51.89"N, 16° 0'50.77"E

40°36'50.64"N, 15°57'10.60"E

Sodo + 40°34'36.22"N, 16° 1'0.65"E Albano + 40°34'28.46"N, 16° 1'14.07"E Freddo+ 40°34'19.37"N, 16° 1'32.64"E Moliano + 40°34'17.38"N, 16° 2'9.17"E Monticello + 40°34'14.69"N, 16° 2'23.47"E Calcesi + 40°33'25.75"N, 16° 3'28.56"E Arena+ 40°33'15.35"N, 16° 3'36.90"E Della vecchia + 40°33'3.92"N, 16° 3'46.55"E

Balzano + 40°32'41.95"N, 16" 4'28.04"E Gallipoli + 40°32'52.37"N, 16° 4'59.67"E Scannacapre + 40°33'1.30"N, 16° 5'25.10"E Vallone + 40°33'6.12"N, 16° 5'49.39"E Ruderi + 40°33'58.50"N, 16° 6'46.59"E Mandria II + 40°34'2.33"N, 16° 6'49,09"E Chiaromonte + 40°34'36,52"N, 16° 7'8,26"E Fattore + 40°34'42.73"N, 16° 7°15.02"E Valicante + 40°34'52.89"N. 16° 7'57.99"E 40°35'8.15"N, 16° 8'15.96"E Cognato + Turato + 40°35'10.73"N, 16° 8'23.64"E 40°35'32.20"N, 16° 9'20.79"E Calciano I + Tricarico I+ 40°35'52.46"N, 16°10'2.31"E Tricarico II + 40°35'55.05"N, 16°10'20,36"E Tricarico III + 40°35'59.57"N, 16°10'41.43"E 40°35'58.53"N. 16°10'56.26"E Calciano II + 40°35'48.26"N, 16°13'1.61"E Calciano III + 40°35'39.66"N, 16°14'38.39"E Garaguso + Auletta+ 40°35'34.67"N, 16°14'48.99"E

Vallone Scamarce Salandra

Concone

40°35'9.21"N, 16°16'48.57"E

40°34'57.99"N, 16°21'2.36"E

40°31'40.55"N, 16°27'49,20"E

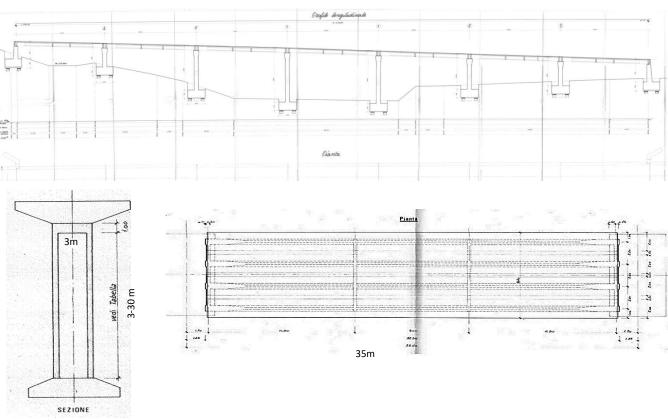
PONTI E VIADOTTI DELLA RETE VIARIA

METAPONTO-POTENZA

Viadotto

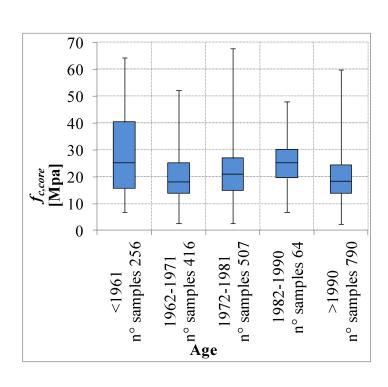
Coordinate GPS

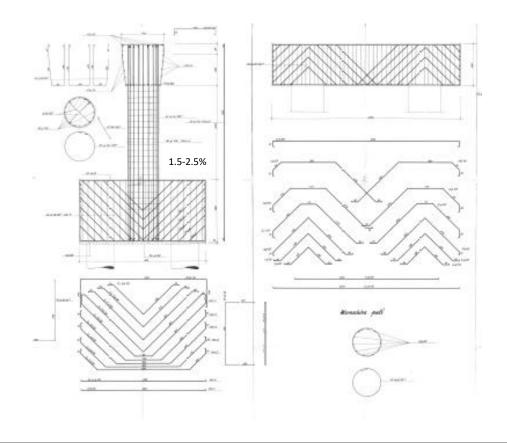
50	PO_SS407<_6476	40°38'57.12"N, 15°55'51.25"E
51	PO_SS407<_6957	40°38'52.78"N, 15°56'8.97"E
52	Grancia I	40°37'47.72"N, 15°57'0.49"E
53	Grancia II	40°37'25.14"N, 15°57'2.63"E
54	Brindisi I -	40°36'49.74"N, 15°57'11.02"E
55	Brindisi II	40°36'41.01"N, 15°57'17.15"E
56	Giaconte	40°36'32.24"N, 15°57'47.23"E
57	Gianni	40°36'20.29"N, 15°58'32.02"E
58	Mecca	40°36'16.20"N, 15°58'46.97"E
59	Coronati	40°35'45.94"N, 15°59'4.74"E
60	Brutto	40°35'39.84"N, 15°59'10.69"E
61	Pietra	40°35'20.94"N, 15°59'51.36"E
62	Adamo	40°34'56.79"N, 16° 0'35.76"E
63	Trivigno	40°34'50.13"N, 16° 0'54.22"E
64	Ferrovia	40°34'40.82"N, 16° 0'59.05"E
65	Sodo	40°34'31.60"N, 16° 1'8.60"E
66	Albano	40°34'28.55"N, 16° 1'14.10"E
67	Freddo	40°34'16.82"N, 16° 1'42.45"E
68	Moliano	40°34'16.31"N, 16° 2'20.24"E
69	Monticello	40°34'11.09"N, 16° 2'39.26"E
70	Costa	40°33'39.48"N, 16° 3'18.00"E
71	Calcesi	40°33'22.28"N, 16° 3'31.83"E
72	Della vecchia	40°32'58.36"N, 16° 3'54.88"E
73	Balzano	40°32'46.26"N, 16° 4'46.56"E
74	Gallipoli	40°33'3.51"N, 16° 5'34.88"E
75	Vallone	40°33'10.00"N, 16° 5'56.94"E
76	Cipressi	40°33'11.77"N, 16° 6'6.55"E
77	Carvotto II	40°33'14.45"N, 16° 6'13.13"E
78	Carvotto I	40°33'17.79"N, 16° 6'16.71"E
79	Ruderi	40°34'1.08"N, 16° 6'47.59"E
80	Mandria II	40°34'17.94"N, 16° 6'50.22"E
81	Mandria I	40°34'34.81"N, 16° 7'6.42"E
82	Chiaromonte	40°34'41.13"N, 16° 7'11.66"E
83	Fattore	40°34'43.94"N, 16° 7'16.84"E
84	Valicante	40°35'6.20"N, 16° 8'10.40"E
85	Cognato	40°35'9.83"N, 16° 8'19.92"E
86	Turato	40°35'22.69"N, 16° 8'50.25"E
87	Calciano I	40°35'48.16"N, 16° 9'39.44"E
88	Tricarico I	40°35'53.32"N, 16°10'6.26"E
89	Calciano II	40°35'50.21"N, 16°11'10.78"E



Valutazione della vulnerabilità

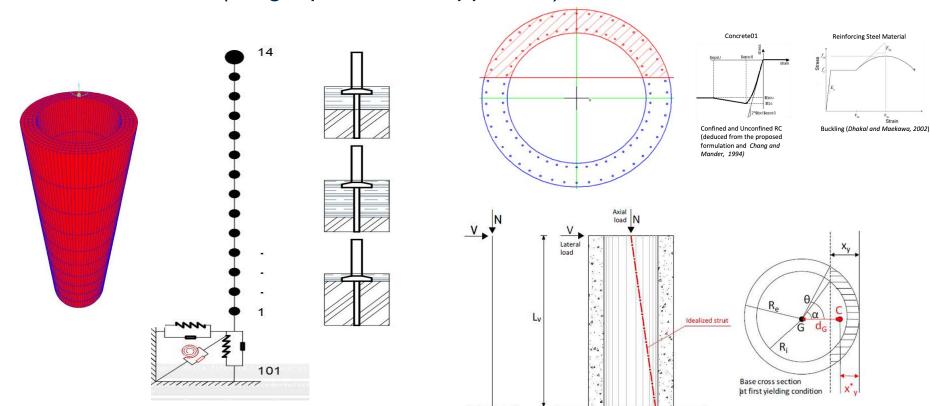
Caratteristiche geometriche


Viadotto	H media H	l min l	lmax
Chiaromonte	21,1	19,2	23,0
Cognato	14,8	10,7	18,9
Valicante	21,9	2,8	28,7
Turato	14,8	2,0	23,9
Scannacapre	4,8	1,0	9,2
Trivigno	5,6	4,9	6,3
Arena	7,9	7,7	8,1
Calcesi	6,0	5,6	6,5
Della vecchia	6,1	4,2	8,7
Freddo	9,9	5,7	11,9
Monticello	7,7	2,1	11,0
Sodo	7,1	5,1	11,0
Balzano	13,5	8,7	15,0
Gallipoli	12,4	11,6	13,4
Mandria II	11,8	6,3	17,2
Vallone	5,8	4,6	6,9



Valutazione della vulnerabilità

Caratteristiche strutturali

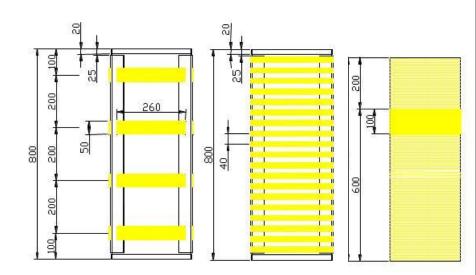


Valutazione della vulnerabilità

Reinforcing Steel Material

Modelli numerici (Single pier model approach)

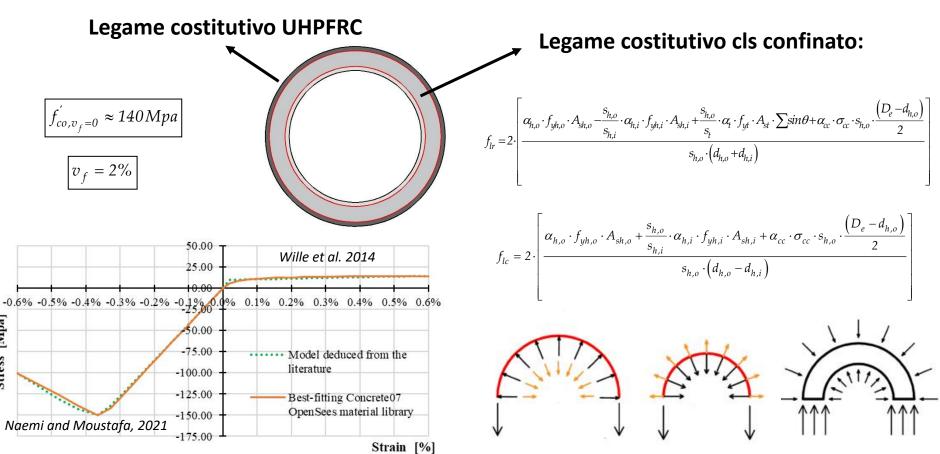
Strategia di intervento



Esito verifiche:

- Adeguata resistenza flessionale
- Scarsa resistenza a taglio (pile basse)
- Scarsa duttilità (pile alte)

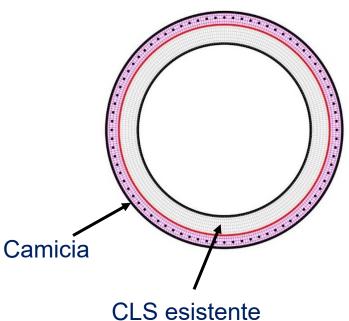
INCAMICIATURA IN ACCIAIO
INCAMICIATURA CON C.A.M.
INCAMICIATURA FRP
INCAMICIATURA IN C.A.



[Mpa]

Strategia di intervento

Ricostruzione volumetrica con UHPFRC


Strategia di intervento

Incamiciatura in c.a.

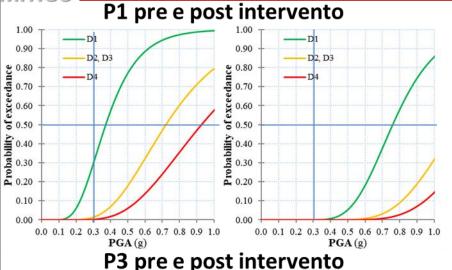
- Camicia 16 cm di Cls C80/95
- Armature B450C:

70Φ28 in direzione longitudinale Φ10/120" in direzione trasversale

1.00

0.90

0.80 0.70 0.60


5 0.50

Probability 0.40 0.30 0.20

0.10

Confronto pre – post intervento – curve di fragilità

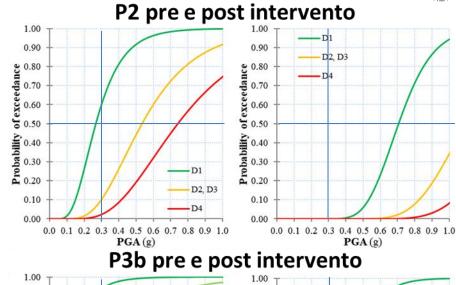
0.90

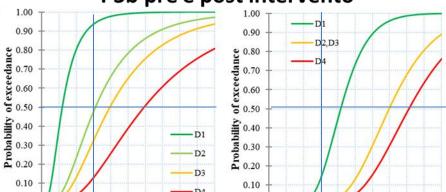
0.80 0.70 0.60

Probability 0.40 0.30 0.20

0.10

D2. D3


0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0


PGA(g)

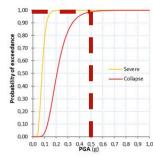
D2, D3

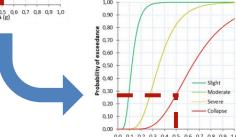
PGA(g)

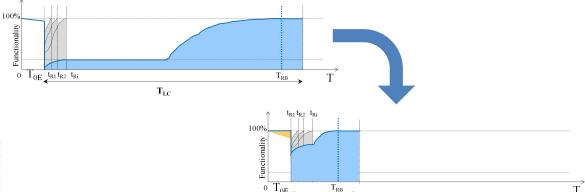
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

PGA(g)


0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

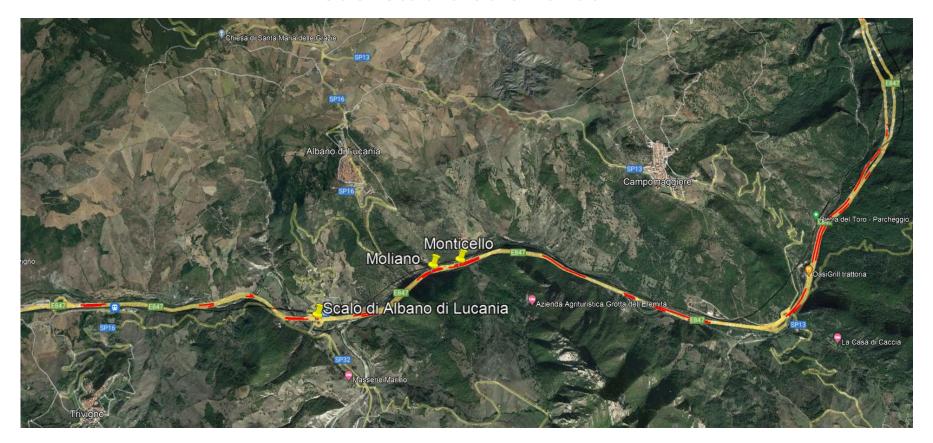

PGA(g)

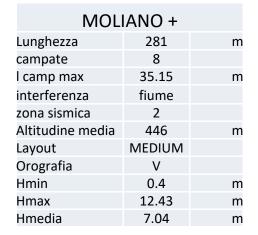


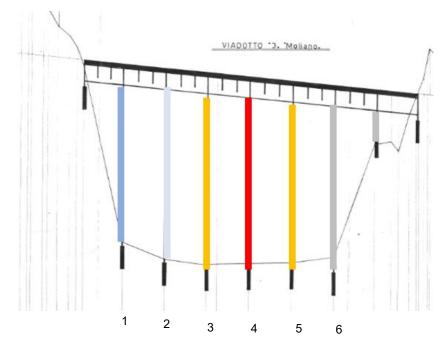
Strategia di intervento Resiliente

 T_{LC}

$$R_{index}(I) = \sum_{area=1}^{n} \left\{ W_{area} \cdot \left(1 - \sum_{type=1}^{m} \frac{E\left[T_{RB} \mid C_{r,r} \mid I\right]}{T_{LC}} E\left[C_{r,r} \mid d_{l,type} \mid I\right] \right) P\left[d_{l} = d_{l,type} \mid I\right] \right\}$$




Casi studio selezionati



Casi studio selezionati

Stato di fatto al 31.12.2021

Stato di degrado delle pile del viadotto Moliano

PILA 3

PILA 4

PILA 5

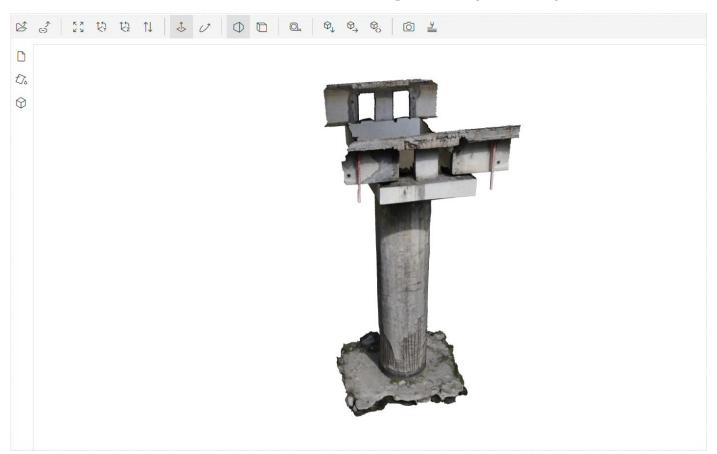
Rilievo del degrado

- Misure dirette in sito
- Rilievi con Sistema Aeromobile a Pilotaggio Remoto (SAPR)
- Indagini Termografiche
- Rilievi con GEORADAR

Identificazione degrado (SAPR)

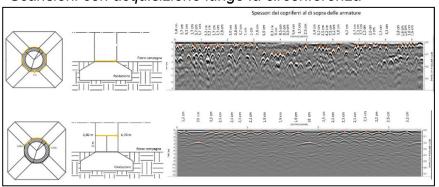
- Georeferenziazione infrastruttura

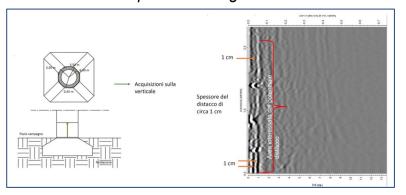
- Generazione modelli 3D singole pile


- Ortofoto infrastruttura (in CAD)

Identificazione degrado (SAPR)

Identificazione degrado (indagini termografiche)


- Individuazione zone copriferro distaccato
- Individuazione zone copriferro fortemente ammalorato

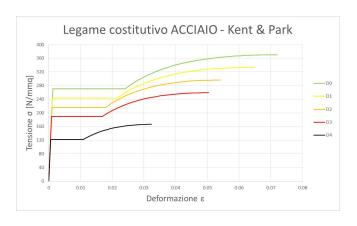

Identificazione degrado (Georadar)

Scansioni con acquisizione lungo la circonferenza

Scansioni con acquisizione lungo la verticale

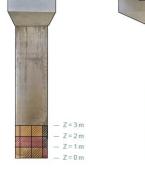
- Determinazione spessore copriferro
- Verifica disposizione armature

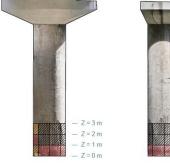
Modellazione degrado



	Livello di degrado			
Scenario	w_cr	Psi_L	Psi_T	W_cr_nucleo
D0	0	0	0	0
D1	1	0.05	0.05	0
D2	3	0.15	0.15	1
D3	espulso	0.2	0.2	3
D4	espulso	0.3	0.3	espulso

Modellazione degrado



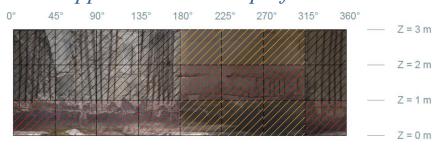


EST

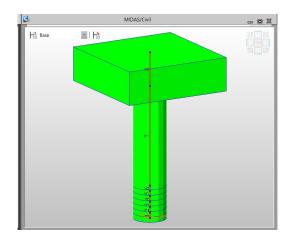
Rappresentazione Prospettica SUD

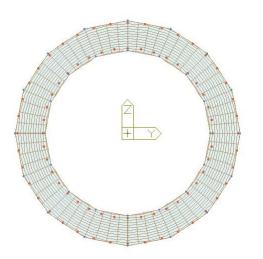
Scenario	Livello di degrado
D0	nullo
D1	basso
D2	medio
D3	alto
D4	molto alto

Rappresentazione in sezione

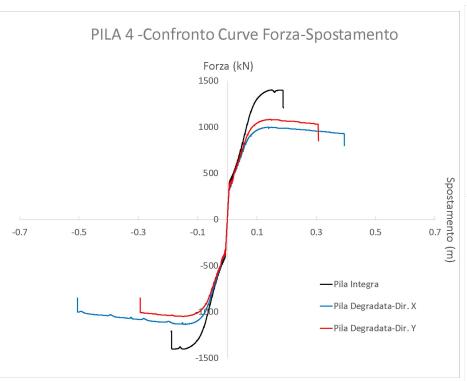

 $-Z = 3 \, \text{m}$

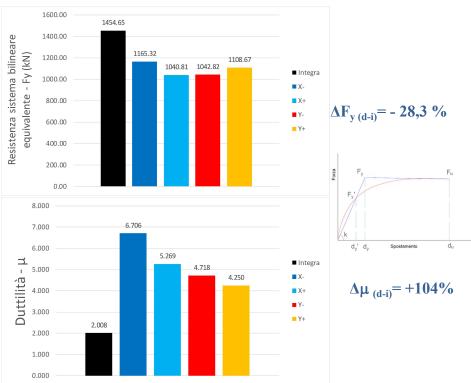
Rappresentazione Superficie Laterale



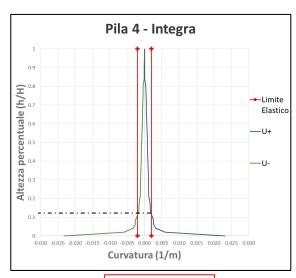


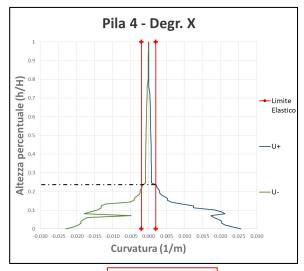
Analisi sismica (pushover)

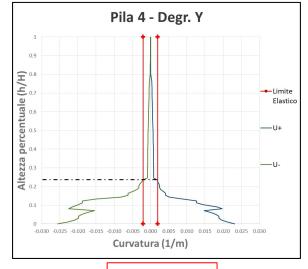




Analisi sismica (pushover)







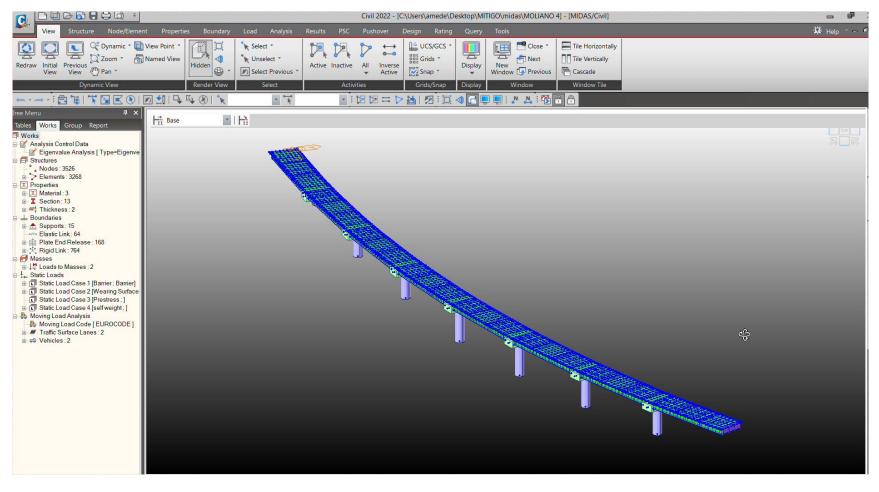
Analisi sismica (pushover)

$$h_{CP} = 0.12 \cdot H$$

$$h_{CP} = 0.23 \cdot H$$

$$h_{CP} = 0.24 \cdot H$$

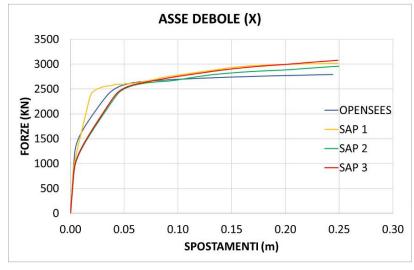
h_{CP} = lunghezza della cerniera plastica χ = curvatura Φ_{pl} = rotazione plastica $\mu = duttilita$


$$L_{CP}(D) > L_{CP}(I) \xrightarrow{\phi_{pl} = \chi_{med} \cdot L_{CP}} \phi_{pl}(D) > \phi_{pl}(I) \xrightarrow{\mu = \phi_{pl} \cdot (H - L_{CP})} \mu(D) > \mu(I)$$

$$\mu = \phi_{\text{pl}} \cdot (H - L_{\text{CP}})$$

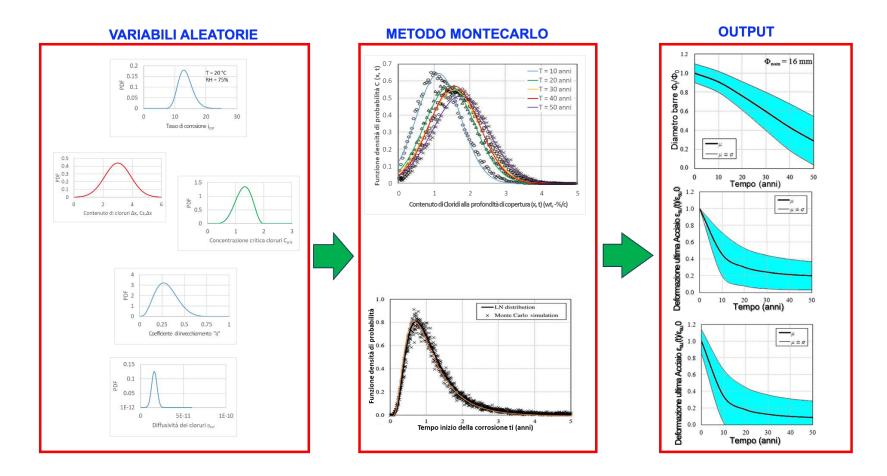
$$\mu(D) > \mu(I)$$

Possibili sviluppi futuri



- Ampliamento analisi numeriche
- Interazione con il sistema di gestione della rete mediante GIS
- Calcolo indice di rischio (basato su FC)
- Ottimizzazione uso risorse mediante prioritizzazione interventi
- Sviluppo modello di gestione e programmazione interventi (non necessariamente riferito alla SS407)

Possibili sviluppi futuri



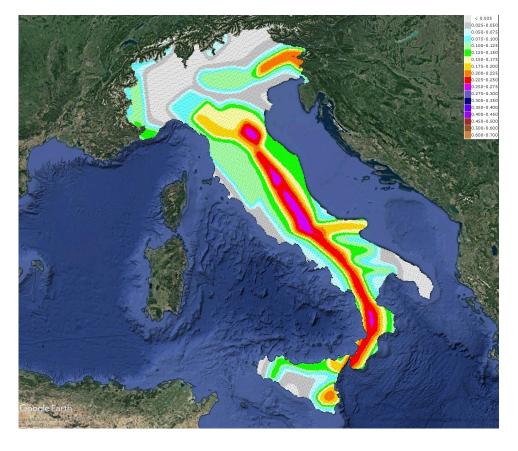
Possibili sviluppi futuri

Mitigazione dei rischi naturali per la sicurezza e la mobilità nelle aree montane del Mezzogiorno

Università degli studi della Basilicata

Modelli di gestione delle strutture ed infrastrutture viarie finalizzati alla mitigazione del rischio sismico Obiettivo di Ricerca 3

Obiettivo di Ricerca 6

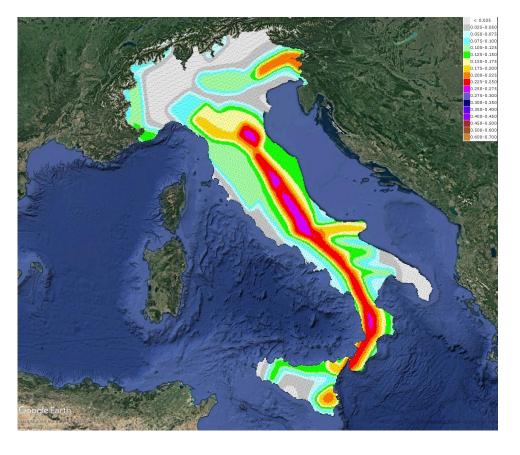

Marco VONA (OR3) Donatello CARDONE (OR6) Benedetto MANGANELLI

27 Febbraio 2024

Paolo HARABAGLIA

MITES

PERICOLOSITÀ



La pericolosità si calcola classicamente con il metodo PSHA ma

p.e. 10% in 50 anni

... questo è

MSCA

MultiSynthetic Catalog Approach

10^5 cataloghi sinteticiAttenuazione da Bindi et al. 2011Parametrizzazione come MPS04

p.e. 10% in 50 anni

MSCA vs. PSHA

Computazionalmente molto più pesante

Naturalmente estendibile a:

Danno

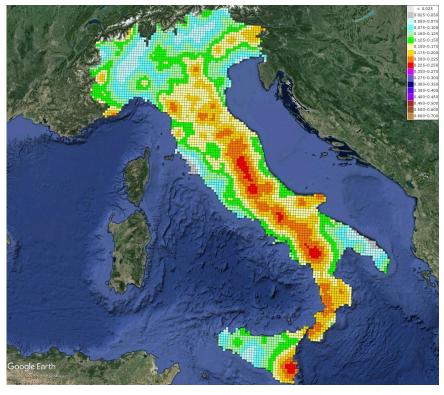
Rischio

Resilienza

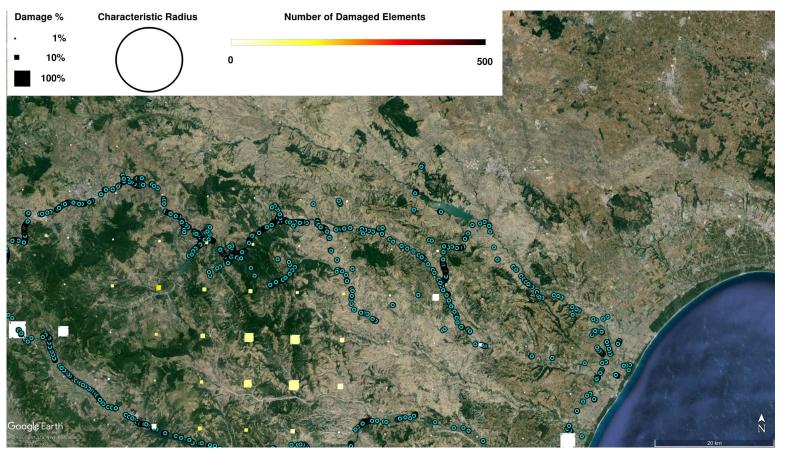
Consente di calcolare la

PROBABILITÀ di scenario

Non limitato alla classica parametrizzazione in termini di zone o di sorgenti sismogenetiche

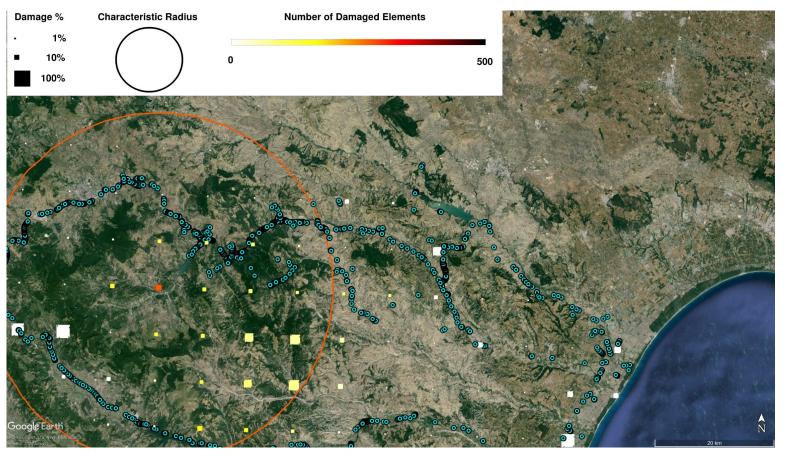


NON POISSONIANA

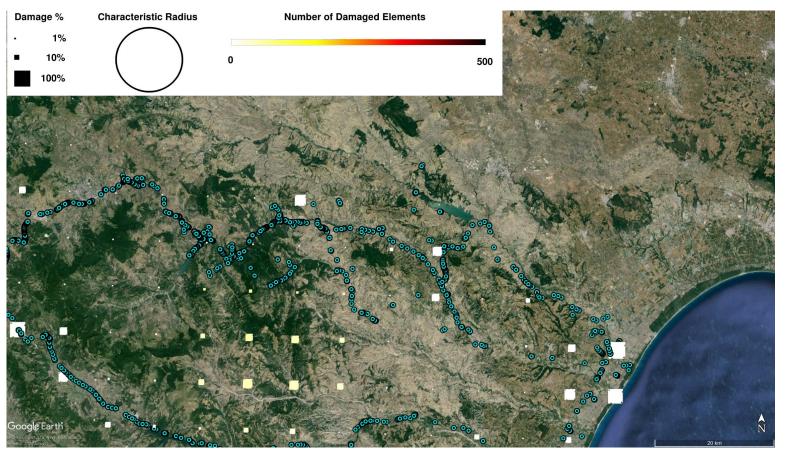

p.e. 10% in 15 anni

p.e. 2% in 15 anni

p.e. 10% in 200 anni



p.e. 10% in 200 anni



p.e. 5% in 200 anni

p.e. 10% in 15 anni

Conclusioni e sviluppi prossimi

- Nuovo modello di attenuazione
- Integrazione del danneggiamento cumulato
- · Miglioramento dell'approccio non-poissoniano
- Inserimento di un modulo per la gestione degli itinerari
- •